

Azimuthal Anisotropy Measurements from Cumulants in PHENIX

Michael Issah
(SUNY Stony Brook)
for the PHENIX Collaboration

DNP Fall 03, Tucson AZ

Introduction

- Azimuthal anisotropy: sensitive to early pressure build-up and hence to the equation of state
- Detailed measurements of v₂ can assist in discriminating between different sources of the anisotropy
- Standard methods to calculate v₂: reaction plane and twoparticle correlations
- Cumulant method: cumulants of multiparticle azimuthal correlations are related to flow harmonics [Borghini et al., PRC 64, 054901]

Cumulant Method

measured flow nonflow
$$\langle e^{in(\phi_1 - \phi_2)} \rangle_m = v_n^2 + \langle e^{in(\phi_1 - \phi_2)} \rangle_c$$
 Second order cumulant

If flow predominates, cumulants of higher order can be used to reduce non-flow contributions

Application of Cumulant Method in PHENIX

- Cumulant analysis: non-trivial PHENIX analysis
- Simulations performed using a toy model MC generator with PHENIX acceptance as input
- Results show that the
 v₂ extracted is robust and
 acceptance corrections are
 well implemented
- Differential measurements have been performed as a function of p_T, η, centrality, particle species

p_T and η dependence of v_2

- Finite v_2 at high p_T : high p_T particles, probably associated with jets are correlated with low p_T particles from soft processes
- No apparent dependence of v2 on η over the PHENIX η coverage

Dependence on integral p_T range

- Equivalent to assorted two-particle correlations
- No significant dependence on integral p_T of reference

 Good agreement between values from second order cumulants and those from other methods

Differentiating between models

- Anisotropy driven by eccentricity: v₂ scales with N_{part}
- Model (Kovchegov): v_2 scales with the (area of overlap)-1/2 (~1/ $\sqrt{N_{part}}$)
- true over a limited range of centrality
- Measurements help discriminate between models

Scaling of the anisotropy

- The differential anisotropy scales with the integral anisotropy
- Scaling property holds for both high and low p_T, indicating correlations between particles from these two regimes
- $v_2(b,p_T) \approx v_2(b) v_2(p_T)$

Summary / Conclusion

- Differential azimuthal anisotropy has been measured in PHENIX using cumulants of azimuthal correlations performed
- These measurements indicate that:
 - ➤ High & low p_T particles are correlated

 - $\triangleright v_2(b,p_T)$ factorizes in $v_2(b)v_2(p_T)$
 - ► There appears to be eccentricity scaling of v₂ at high p_T

Results are compatible with correlation of jets with the reaction plane, as would be expected from jet quenching

9